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1. Explain how numbers are stored in the floating point system characterized by
(β, t, L, U). What are the two ways of representing any real number in the
floating-point system ? Give the definition of unit round.

2. To convert a positive decimal fraction x < 1 to its binary equivalent

x = (.a1a2a3 . . .)2

begin by writing

x = a1 · 2−1 + a2 · 2−2 + a3 · 2−3 + . . .

Based on this use the following algorithm

(a) x1 := x; j := 1

(b) While xj 6= 0, do the following
aj := Integer part of 2xj

xj+1 := Fractional part of 2xj

j := j + 1
End while

Apply this algorithm to convert x = 2/3 to its binary form. Represent x = 2/3
in the floating-point system (β, t, L, U) = (2, 6,−6,+5) using both chopping
and rounding.

3. Consider the second order divided difference f [x0, x1, x2]. (a) Prove that the
order of the arguments x0, x1, x2 does not affect the value of the divided differ-
ence. (b) Prove that

f [x0, x1, x2] =
1

2
f ′′(ξ)

for some ξ between the minimum and maximum of x0, x1 and x2.



4. A variant of Newton’s method for root finding called Steffenson’s Method uses
an approximation to the derivative and is given by

xn+1 = xn −
f(xn)

D(xn)
, D(xn) =

f(xn + f(xn))− f(xn)

f(xn)

Let α be a root of f(x) and assume f ′(α) 6= 0. Write the iteration as xn+1 =
φ(xn) and show that α = φ(α). Show that this is a second order method, i.e.
it converges quadratically.

5. Consider linear interpolation applied to tabular data [xi, f(xi)]. The function
values are not exact since they are rounded to a few decimal places. You have
to interpolate for some x0 < x < x1 given the rounded function values f0, f1

which have errors ε0 = f(x0)− f0 and ε1 = f(x1)− f1. Show that the error of
linear interpolation is

|e(x)| ≤ h2

8
max

x0≤t≤x1

|f ′′(t)|+ max{|ε0|, |ε1|}

which is a sum of interpolation error and round-off error.

6. Suppose you have a table of logarithms to base 10 for 1 ≤ x ≤ 2. The spacing
between xi is h = 0.001 and log(x) is correctly rounded to five decimal places
so that the error in log(x) is less than ε = 0.000005. For linear interpolation,
estimate the interpolation error, round-off error and total error. Which error is
dominant ? If you have to improve the table to reduce the total interpolation
error, how would you do it ? What would be a good strategy to choose h
and the number of decimal places so that the total interpolation error is less
than a specified upper bound ? Apply the result of previous problem and use
log(e) ≈ 0.434.

7. Consider the problem of finding a quadratic polynomial p(x) for which

p(x0) = y0, p′(x1) = y′1, p(x2) = y2

with x0 6= x2 and {y0, y
′
1, y2} the given data. What conditions must be satisfied

for such a p(x) to exist and be unique ?

8. Explain what is a cubic interpolating spline. Consider a cubic interpolating
spline with the additional boundary conditions

s′′(x0) = M0 = 0, s′′(xn) = Mn = 0
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Show that ∫ xn

x0

[s′′(x)]2dx ≤
∫ xn

x0

[g′′(x)]2dx

where g(x) is any twice continuously differentiable function that satisfies the
interpolating conditions g(xi) = yi, i = 0, 1, . . . , n.

9. Let f(x) be three times continuously differentiable on [−α,+α] for some α > 0,
and consider approximating it by the rational function

R(x) =
a+ bx

1 + cx

Choose the constants a, b, c so that

R(j)(0) = f (j)(0), j = 0, 1, 2

Is it always possible to find such an approximation R(x) ?

10. The iteration
xn+1 = 2− (1 + c)xn + cx3

n

will converge to α = 1 for some values of c (provided x0 is chosen sufficiently
close to α). Find the values of c for which this is true ? For what value of c
will the convergence be quadratic ?

11. Given the function values {xi, fi}, i = 0, 1, . . . , n, write down the Lagrange
form of the interpolating polynomial and explain how it interpolates the given
data. For n = 2 and with uniformly spaced data, differentiate the Lagrange
polynomial to find a formula which approximates the derivative f ′(x0).

12. Explain what is meant by a minimax polynomial approximation. Let f ∈
C2[a, b] with f ′′(x) > 0 for a ≤ x ≤ b. If q∗1(x) = a0 +a1x is the linear minimax
approximation to f(x) on [a, b] then show that

a1 =
f(b)− f(a)

b− a
, a0 =

1

2
[f(a) + f(c)]− 1

2
(a+ c)

[
f(b)− f(a)

b− a

]
where c is the unique solution of

f ′(c) =
f(b)− f(a)

b− a
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